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Abstract

The average treatment effect (ATE) is a global measure of the effectiveness of an
experimental treatment intervention. Regression based approaches are popular ways
to estimate the ATE, especially in the context of randomized trials, because the in-
clusion of covariates can reduce the estimator’s variance. Different frameworks lead
to different estimators and associated standard errors, and we present a convenient
regression derived ATE estimator for which covariates are treated as random not fixed,
and minimal assumptions are placed on the respective response surfaces of the treat-
ment and control groups. In particular, the regression is thought of only as a linear
approximation to the response surface. We show that the estimator is asymptotically
unbiased, and in a novel way derive its marginally valid asymptotic standard error. It
is shown to underlie a more powerful test for the ATE than a classical estimator. Real
and simulated data are used to illustrate typical gains from this estimator, as well as
to shed light on the conditions when the gains are substantial.

1 Introduction

In the study of randomized controlled trials (RCTs), the average treatment effect (ATE)
is a measure of an experimental intervention’s global effect on a study population. For a
treatment population response T and control population response C, the ATE is defined as
τ = E [T ] − E [C], where the measured responses can be continuous or categorical. While
the simplest estimator is the difference of means T̄ − C̄, there are many ways to estimate
τ , depending on the sampling framework, choice of auxiliary information about the treated
and control population, and target of inference. Even T̄ − C̄ will have different standard
errors depending on the sampling assumptions and scope of inference.

Our purpose in this paper is to clearly define an unrestrictive “assumption-lean” sampling
and modeling framework, to define an ATE estimator within that framework, to explicitly
derive its standard error, and to explicitly compare its asymptotic risk to the difference-
in-means estimator. In order to properly position our work, we will briefly describe the
principal strands of ATE estimation.
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1.1 Brief development of ATE estimation

1.1.1 Fixed X, potential outcomes

The first strand of ATE study, first described by Neyman, focused on randomized experi-
ments in fixed, finite populations [Splawa-Neyman et al., 1990]. The fixed subjects would
be randomized either into treatments 1 or control. The only source of randomness came
from the assignment of treatment condition, and inference extended only as far as to these
subjects in the trial. Later developed by Rubin, this came to be known as the estimation of
ATE within the “potential outcomes” framework, of which the ATEinteract estimator from
[Lin, 2013] is a recent example. This Neyman framework has since evolved to accommodate
a superpopulation from which the experimental units can be thought to have been sampled
[Imbens and Rubin, 2007].

1.1.2 Regression adjustments

More recently, ATE has been estimated via regression in order to improve its precision. Ap-
pealingly, yhe ATE can be explicitly written as a model parameter of the regression that
describes the RCT, and the random discrepancies in treated and control covariate distribu-
tions are adjusted away. Within the regression framework, there are those who consider the
covariates to be fixed, and others who consider them to be random; further, there is the choice
of whether the statistical model as written down should be treated as true true. A fixed-X,
true model approach was influentially critiqued by Freedman [Freedman, 2008], who showed
that ATE estimators so derived can lead to reduced asymptotic precision, and can be beset by
small-sample bias. In response, [Lin, 2013] while working in the potential outcome, fixed-X
case, no longer assumes correct model specification, and shows that ATE estimators defined
in this context have desirable properties. Another paper [Imbens and Wooldridge, 2008] an-
alyzes ATEs under more flexible circumstances, allowing covariates to have a distribution
and assuming heterogeneous effects. The authors present their useful results “assuming
the linear regression model is correctly specified.” More recently, [Samii and Aronow, 2012]
compare the variances of the Neyman based and sandwich based estimators of the variance
of the ATE, although the jump between fixed and random covariates is not obvious.

1.1.3 Assumption lean

More similarly to our framework, ATE has also been described in the context of semi-
parametric theory, as in [Yang and Tsiatis, 2001], [Tsiatis et al., 2008], [Zhang et al., 2008],
[Rosenblum and van der Laan, 2010], where minimal assumptions are made about covariate
distributions and correct model specification is not always assumed. Such works show the
asymptotic optimality of particular ATE estimators in the case of model specification, though
it is not clear if the derived standard errors fully account for the randomness of covariates. A
separate and rich literature in statistics and econometrics, distinct however from our work,
considers matching to improve the power of ATE estimates. For one good example of many,
see [Abadie and Imbens, 2006] for a study of large sample properties of such estimators.

1“Treatments,” because the number of treatments can exceed 1.
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1.2 Our framework

With minimal assumptions, we derive efficient, explicit, asymptotically unbiased estimates
for the unconditional average difference between the treatment and control groups. We show
its difference from other estimators and improvement over the difference in means estimator,
and therefore show that it is a more powerful test of the ATE.

We assume only that there exists a joint distribution between the covariates, the treat-
ment indicator, and the response, and we do not assume that the model is correctly specified.
Conveniently, the ATE can be estimated through least squares, and the targets of inference
in the treatment and control regressions are the best linear approximations to their regression
surfaces.

We position these results in the more realistic, assumption lean framework where the
covariates are treated as random. This is appealing because the written statistical model
rarely captures the data generating process, and subjects’ covariates in an RCT should
therefore be treated as random2. Moreover, for an analysis of an RCT to be useful, we want
the scope of inference to extend outside of the sample in question.

In section 2 we define our framework and we define our ATE estimator. We then compare
its performance to the difference in means estimator and show that it dominates, and consider
further extensions. Section 3 illustrates the performance of the regression based estimator
on real and simulated data, and compares it to two similar estimators. Section 4 concludes.

2 Framework

2.1 Assumption lean

In this section we make precise the mathematical framework in which we we define regres-
sions for the treatment and control groups, and from which the ATE estimator is derived.
It can be described as an “assumption-lean” framework, and the setup is borrowed from
[Buja et al., 2015]. Specifically, we hold with Freedman, who writes that “randomization
does not justify the assumptions behind the OLS model” [Freedman, 2008] and so relax as-
sumptions to permit the subjects’ covariates to be drawn from a distribution; and though we
rely on OLS for estimation, we do not assume that linear relationships hold in the popula-
tion. And, to reflect the possibly heterogeneous effects in the treatment and control groups,
we include a full set of covariate-treatment indicator interactions.

Without loss of generality, consider the treated population. Let the population of subjects
be described by the random variables X1, . . . , Xp, Y , with ~X = (1, X1, . . . , Xp)

′ the random
vector of predictor variables. The joint distribution between the predictors and the response
P = P(dx1, . . . ,dxp,dy) is assumed to have a full rank covariance matrix and four moments.

We define the conditional mean of Y at ~X by µ( ~X) = E
[
Y | ~X

]
. OLS assumptions are clearly

relaxed: minimal assumptions are placed on errors, predictor variables can be omitted,
and the true response surface is not assumed to be linear in the predictors (the operating
assumption is that it is not).

2After patients have entered a clinical trial, nobody seriously presumes that other, putative patients in
the target population have the same individual characteristics as the study subjects.
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The conditional mean can be decomposed into a linear and a non-linear component. The
linear component is the best linear approximation to the true conditional response surface;

its partial slopes are defined by β =
(
E
[
XXT

])−1 E [Xµ(X)], where the expectation is
over the joint distribution of the X and the Y . To foreshadow, the ATE can be represented
by a partial slope thus defined. Finally, the difference between µ( ~X) and βT ~X is denoted

by η( ~X), which is itself a random variable3. In equations:

η( ~X) = E
[
Y | ~X

]
− (β(0) + ~X

′
β) (1)

where β(0) is the first coordinate of β and represents the population intercept.
Estimation is straightforward: estimate β in the usual least squares fashion: β̂ =(

XTX
)−1

XTY . With the population parameter β and its method of estimation thus de-
fined, we present the results that we will appeal to in the paper:

1. N1/2(β̂−β) converges to a random variable with mean 0, where N is the sample size;

2. β̂ is an asymptotically unbiased estimator of β.

Admittedly, in finite samples, β̂ may be a biased estimator of β.

2.2 Treatment and control populations

Recall that for treated response T and control response C, the target of estimation in our
problem is τ = E [T ] − E [C]. In this section we define T and C as responses to separate
regressions with random covariates. We note that the subjects of both the treatment and
control groups are assumed to have been sampled at random from the same population, so
that the treated and control covariate distributions are the same at the population level.
With the notation from 2.1:

Ti = β
(0)
T + ~X

′
T iβT + ηT ( ~X)i + εT i (2)

and, analagously,

Ci = β
(0)
C + ~X

′
CiβC + ηC( ~X)i + εCi (3)

We make three comments about the regression terms in the footnotes4 5 6.

3Our operating assumption is that η( ~X) will not be identically equal to zero – that is, that non-linearity
will be present in the population

4Errors. We place minimal demands on the errors: only that they should have zero mean and satisfy
minimal moment conditions (there should be four moments). Because of iid sampling, they will be inde-
pendent. Their distributional form is unspecified, and we do not assume normality of errors. We also allow
their respective variances to differ, and denote the treated and control error variances, respectively, by σ2

T

and σ2
C .

5Heterogeneity. Note, also, that in the population, slopes are not assumed to be the same: we allow for
heterogeneous effects. The random variables representing nonlinearity (η) are also allowed to differ between
the treatment and control groups.

6Population least squares Because we no longer assume that the response is linear in the covariates,

β
(0)
T + ~X

′
TβT should be thought of as the treated group’s best linear approximation, at the population level,

to E
[
T | ~X

]
. So β

(0)
T and βT are population parameters derived from population least squares regression and

minimize the expected squared distance between the linear surface and the true response surface.
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3 The ATE estimator

3.1 ATE as regression parameter

In this section we show that the ATE (τ) is a parameter in the regression models and how
it can be easily estimated. In the section to follow we compute its efficiency and compare it
to the efficiency of the simple, difference-in-means estimator.

Subtracting (3) from (2) and taking expectations, we see that

τ =
(
β

(0)
T − β

(0)
C

)
+ E

[
~XT

]
βT − E

[
~XC

]
βC (4)

By assumption, E
[
~XT

]
= E

[
~XC

]
= E

[
~X
]
, because the treated and control subjects are

drawn from the same population, so (4) can be written as

τ =
(
β

(0)
T − β

(0)
C

)
+ E

[
~X
]

(βT − βC) (5)

Note that when E [X] = 0, then τ =
(
β

(0)
T − β

(0)
C

)
, and the ATE is just the difference

between the respective population intercepts. The question is how to estimate it optimally.
If plug-in estimates are used in (4), with the empirical covariate means of the treatment
and control groups as estimates for their population counterparts, the result is actually the
simple difference-in-means estimator τ̂diff = T̄ − C̄. So controlling for covariates loses any
advantage if no information is shared between the treatment and the control groups.

Instead, we estimate τ as in (5) by estimating E
[
~X
]

by the complete set of pooled

covariates:
(
nT ~̄XT + nC ~̄XC

)
/N . Substituting this single estimate into (5), we find that

τ̂regression =
(
β̂

(0)
T − β̂

(0)
C

)
+
nT ~̄XT + nC ~̄XC

N

(
β̂T − β̂C

)
When estimating, there is a way to preserve the convenient difference in intercepts in-

terpretation of the ATE. The estimator τ̂regression is invariant to location, so it is conve-
nient to mean center the covariates (with respect to the common, pooled mean), so that(
~XT

)
i

∗
=
(
~XT

)
i
− ~̄X and

(
~XC

)
i

∗
defined similarly. The ATE can therefore be estimated

simply, via

τ̂regression =
(
β̂
∗(0)
T − β̂∗(0)

C

)
(6)

which is just the difference of intercepts from the (mean centered) treatment and control
regressions.

Theorem 3.1 prepares us for the following section where we compare the variances of
different ATE estimators.

Theorem 3.1 τ̂regression is an asymptotically unbiased estimator of τ .

Corollary 3.2 E [τ̂regression] = τ when
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1. The population response is linear in the covariates, and all covariates have been included
in the statistical model, or

2. E [T |X] = E [C|X] + k, and nT = nC, with k ∈ R.

The second condition says that if the treatment and control response functions are offset
by a constant, then τ̂regression will be unbiased exactly, so long as the treatment and control
sample sizes are equal. When they are unequal, unbiasedness can still be attained by inversely
reweighting the observations. The proofs are deferred to the appendix.

3.1.1 Comments

Regression with interactions. The heterogeneous effects in the treatment and control regres-
sions can be equivalently modeled in a single regression with an interaction term; the ATE
is then an even more convenient parameter. Letting

IT =

{
1 Treatment is administered
0 Control is administered

the response can be written as

Yi = β(0) + β(T )IT + ~X
′
iβ + ~X

′
iβ

(Int)IT + η( ~X)i + ITg( ~X)i + εi (7)

where g( ~X) is the difference in the treatment and control non-linearity functions, and IT
is the treatment indicator at the population level. Similarly to the discussion above, β(T )

is the ATE when the covariate expectation is zero. Accordingly, β̂(T ) is the estimated ATE
when the empirical covariates are first mean-centered7.

Arbitrary response. The analysis is not altered if the Ti, Ci are assumed to be count data,
or to take on values 0, 1. When the response is binary, for example, the target of estimation
is still E [T ]−E [C], but these terms can be rewritten as P (T )−P (C), where P (T ) represents
the proportion of treatment outcomes in the population that take on the value 1.

If one estimates τ̂ by T̄ − C̄, the estimate P̂ (T )− P̂ (C) will fall inside [−1, 1] But since
τ̂regression estimates the response Y not at the respective sample means of the covariates

~XT and ~XC but at the weighted average nT
~̄XT +nC

~̄XC

N
, P̂ (T ) − P̂ (C) is not guaranteed

with probability 1 to be restricted to [−1, 1]. The problem arises in the unlikely case that
there is limited overlap between the observed treatment and control covariates and the slope
coefficients differ significantly between the two groups.

3.2 Relative performance of ATE estimators

In this section we explicitly write down the asymptotic variance of τ̂regression and write down
the asymptotic variance of τ̂diff in an unconventional way, and show that τ̂regression dominates
the τ̂diff in asymptotic risk. By explicitly writing out the variance expressions, we give
practitioners the tools to execute this more powerful test for the ATE. The expressions are
presented one after the other for ease of comparison:

7The predicted response, represented by a single regression with interactions, looks like Ŷi = β̂(0) +

β̂(T )IT + ~Xβ̂ + ~Xβ̂
(Int)

IT
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Lemma 3.3

V ar (τ̂diff) =

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+

1

nT
[β′TΣXβT ] +

1

nC
[β′CΣXβC ] (8)

Lemma 3.4

V ar(τ̂regression) =

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+O(N−2) +

1

N
(βT − βC)′ΣX(βT − βC)

(9)

where ΣX is the variance-covariance matrix of the predictors. The proofs are deferred to the
appendix.

The more familiar expression for Var [τ̂diff] is not 8 but rather Var [T ] /nT + Var [C] /nC .
We chose to express the variance as above for the purpose of term by term comparison
to Var [τ̂regression]. It was found by first conditioning on the regression covariates, and then
marginalizing over their distribution.

The respective standard deviations of τ̂diff and τ̂regression can be estimated, in an asymp-
totically unbiased fashion, by

ŜE(τ̂diff) =

√
MSET
nT

+
MSEC
nC

+
1

nT

(
β̂T Σ̂

(T )
X β̂T

)
+

1

nC

(
β̂CΣ̂

(C)
X β̂C

)
(10)

ŜE(τ̂regression) =

√
MSET
nT

+
MSEC
nC

+
1

N
(β̂T − β̂C)′Σ̂X(β̂T − β̂C) (11)

In the above estimates, MSET is the mean square error computed in the treatment re-

gression, defined as usual by MSET =
(∑n

i=1(Ti − T̂i)2
)
/ (N − p− 1), Σ̂X is the empirical

variance-covariance matrix of the complete collection of covariates, and Σ̂
(T )
X of the treatment

covariates8.
The main claim now follows: the asymptotic variance of the regression-based estimator

dominates the variance of the naive estimator:

Theorem 3.5
AV ar(τ̂diff) ≥ AV ar(τ̂regression) (12)

The proof is found in the appendix.

A comparison of just the asymptotic variances suffices because both estimators are unbi-
ased: τ̂diff trivially, and τ̂regression asymptotically according to 3.1. It therefore follows that
τ̂regression has a lower asymptotic risk than τ̂diff and is therefore more asymptotically efficient.

8Remark: the mean squared error is a scaled estimate of the total variability in the response that is not
captured by the linear approximation. So MSET estimates two components: the variability in the structural
errors εT = σ2

T , together with the variability of η( ~X), the random variable measuring the non-linearity in
the conditional mean.
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3.2.1 Additional remarks

Variance estimates. Theorem 3.5 concerns the true variance of the respective estimators,
rather than to their estimated variances9. The theorem could analogously have been written,
and should be seen here for clarity, as

E
[
V̂ ar(τ̂diff)

]
≥ E

[
V̂ ar(τ̂regression)

]
Equality of variances. The inequality in theorem 3.5 is not strict. Equality between the
asymptotic variances can is attained iff βC = −nC

nT
βT (see appendix). When the treatment

and control sample sizes are equal, then equality is attained when βC = −βT .

3.2.2 Conditional versus marginal estimation

The standard errors we have derived are valid for marginal inference for the ATE. This
brief section is dedicated to making explicit the difference between conditional and marginal
inference in ATE estimation. It is needed because some authors describe a framework with
random covariates where marginal inference is warranted, but give expressions for standard
errors that ignore the variability of the covariates.

Familiarly, the variance of τ̂diff is a marginal variance, measuring the variability of the
estimator over all possible replications of the experiment, irrespective of any measured or
unmeasured covariates:

Var [τ̂diff] =
V ar[T ]

nT
+
V ar[C]

nC
. (13)

and is estimated, unbiasedly, by s2
T/nT + s2

C/nC .
We will now compute the variance of T̄ − C̄ in a conditional manner and highlight the

difference from the marginal result. Define the treatment and control regression as in (2)

and (3) and estimate the treatment and response, respectively, by T̂ = β̂
(0)
T + ~XT β̂T and

Ĉ = β̂
(0)
C + ~XCβ̂C . Now estimate the treatment response at the mean of the treatment

predictors, and likewise for control. Then, from elementary regression, T̂i

∣∣∣
~XT = ~̄XT

= T̄ , and

Ĉi

∣∣∣
~XC= ~̄XC

= C̄.

Classical regression theory applied to this estimator will give a different variance from (13)
because it considers the response conditional on the observed covariates. WLOG consider

T̄ , which was arrived at by estimating the response at ~XT = ~̄XT . To fix the idea, consider
simple regression where the prediction variance is given by

ˆV ar[ŷ|X = xp] = MSE

[
1 +

1

nT
+

(xp − x̄)2∑nT

i=1 (xi − x̄)2

]
(14)

At the covariate mean,

ˆV ar[T̂ | ~X = ~̄XT ] = MSE

[
1 +

1

nT

]
(15)

9Which means that in a given sample, ŜE(τ̂regression) may exceed ŜE(τ̂diff)
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which does not uniformly equal s2T
nT

10.
The variance estimated in (15) ignores the fact that the covariate mean, at which the

response is estimated, is a random quantity, since inference was done conditional on the
covariates. With that in mind, when we computed the variance of τ̂regression, we incorporated
the variability of the covariates, even though the estimator can be thought of as a coefficient
in a regression model. Our results, then, are valid marginally.

3.3 Alternative Conditions

3.3.1 Distribution of X known

Throughout the discussion and analysis, we have assumed that the underlying distribution of
~X is unknown. That distribution, however, might be known: in practice, covariates like age,
weight and income, or for which measurements might exist for the whole population, can be
adjusted for in the study. In such a case, the component of the variance due to estimating
E [X] is removed, and only the regression slopes remain to be estimated. The standard error
estimate of the ATE diminishes correspondingly. The appendix quantifies the precise degree
to which the standard error diminishes when the mean of ~X is known.

3.3.2 Treatment correlated with covariates

In the preceding discussion, we had assumed that the assignment of treatment (the treatment
indicator) was independent of the covariates. Any correlation between treatment indicator
and covariates would only appear in data and be the result of random sampling. In practice,
however, the decision to administer treatment might depend on the covariates: perhaps, by
design and because of cost constraints in the study, a researcher will wish to offer treatment
which is expensive to subjects whose covariates suggest they will require it for a shorter
duration.

To mathematically define this scenario, suppose that the regression is written as in 7, ex-

cept that IT = H( ~X), either deterministically or stochastically, as when IT ∼ Bern
(
H
(
~X
))

.

The treatment indicator becomes a function of the covariates so the assignment mechanism
is different across different strata. In the simplest case, the functional form of H (·) is known,

so that πi = P
(
IT = 1| ~X

)
does not need to be estimated.

With the goal of estimating the ATE, an inverse probability weighting scheme is natural
because it can reduce the bias that would result from the differing sampling regimes across
strata. Accordingly, reweight the observed response yi according to

y
(T )∗
i =

y
(T )
i

πi

with πi defined as above for the treated units, and

10The two estimated variances will be equal only when the R2 from the regression equals p+2
nT +1 , where p is

the number of covariates11. When R2 is larger, then the regression based estimated variance will be smaller
than that of the marginal, conventional estimated variance.
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y
(C)∗
i =

y
(C)
i

1− πi
Such a reweighting has been considered by, for example, [Freedman and Berk, 2008],

except the functional relationship between the confounders and the treatment indicator was
unknown and was consequently estimated via propensity scores. Our future work will extend
to cases when this functional relationship needs to be estimated. One proceeds with the
analysis as before, running the two separate treated and control regressions, estimating the
(weighted response) at the pooled mean of the covariates, and taking the difference.

Another estimate of the ATE would be

1

nT

n∑
i=1

y
(T )∗
i − 1

nC

n∑
i=1

y
(C)∗
i (16)

what [Freedman and Berk, 2008] call a weighted contrast, and is the weighted variant of the
difference in means estimator considered earlier. The latter is a Horvitz-Thompson type
estimator (the formal H-T estimator assumes a finite population from which one samples).
The derivations and analysis relating to the weighted scheme are beyond the scope of the
current paper, and will be considered in depth in a forthcoming work.

4 Illustrations on data

4.1 Simulated data

We have shown that τ̂regression dominates τ̂diff asymptotically. We have found that in small
samples, however, R2 should be larger than about 0.2 in order for our estimator to be more
efficient12. In this brief section we observe the relative efficiencies of the two estimators as
a function of R2. The model chosen vividly illustrates the relationship. Define the treated
and control groups respectively by

T = 3X1 −X2 + ZT

C = X1 +X2 + ZC

In accord with the framework adopted by this paper, the variables are random not fixed.
We allowed

X1 ∼ Lognormal(0, 1)

X2 ∼ Gamma(3, 4)

ZT , ZC
iid∼ N(0, VZ)

As stated previously, τ̂diff depends only on the response, so that estimate does not depend
on the quality of the regression fit. τ̂regression, however, does, so by manipulating the R2 of

12In practice, RCTs usually don’t have an R2 that exceeds 0.25
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the model, we can see the effect on the relative efficiencies of the estimators. The R2 was
manipulated by varying VZ .

We ran 10, 000 simulations with 250 treated and 250 control units in each. Sequentially,
VZ was dialed from 1 to 100 (100 simulations for each value of the variance), with attendant
decreases in the R2 on account of the increased noise. In each simulation, the ratio of the
standard errors ŜE (τ̂regression) /ŜE (τ̂diff) was computed, as well as the R2 of the combined
model with interactions. The plot below gives a sense of the magnitude of the efficiency gains
as a function of R2. As R2 decreases, the estimated standard errors converge as expected.
For high R2, for example above 0.5, the τ̂regression enjoys a dramatically lower standard error.

Figure 1: R2 plotted against
ŜE(τ̂regression)

ŜE(τ̂diff)

A numeric illustration fixes the point. In the model above, the target of estimation
ATE = E [T ]−E [C] = 2e1/2−3/2 = 1.797. Again we simulated 10, 000 draws, with VZ = 3,
balanced groups of 250 treated and 250 control units in each simulation. We recorded the
R2 of the combined regression, as well as the ATE and SE estimates for both estimators
considered in this paper.

The average R2 in the 10,000 simulation was 0.75. With this good fit, the average
ŜE (τ̂diff) = 0.452 (with simulation SE = 0.0011), more than 80% larger than while the av-
erage ŜE (τ̂regression) = 0.249 (with simulation SE = 0.0002). Both estimators were unbiased
(up to simulation granularity), with difference-in-mean and regression-based average ATEs
equal to 1.793 and 1.795, respectively. Using Φ−1(0.975) as the multiplier, coverage of the
true ATE (1.797) was equal to 0.9473 and 0.949, respectively.

There was nothing particular about the model chosen; similar phenomena are observed
for other choices of underlying distribution. The lesson is once again that the regression
based estimate leads to a more powerful test.
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4.1.1 Relation to other estimators

The last decade has seen many alternate estimators of the ATE, each with its own desir-
able properties. In this section we compare and contrast τ̂regression and its precision to its
counterparts.

The ÂTEOLS estimator from [Bloniarz et al., 2015], corresponding to the ÂTEinteract

from [Lin, 2013], is written down like τ̂regression (in the sense that it can be viewed as a dif-
ference of intercepts from two regressions with heterogeneous effects) but these estimators
above have numerically different standard errors than τ̂regression because the sources of ran-
domness are different. In 2013, [Lin, 2013] reexamined Freedman’s critique in the context
of the Neyman model of randomization inference, which is the finite population, potential
outcomes formulation. The randomness comes from which of the potential outcomes is ob-
served. The target of estimation is the average difference across this population between the
two potential responses.

The analog to the difference between the [Lin, 2013] estimator and τ̂regression is the dif-
ference between sample-based estimates and super-population estimates in sampling theory.
As a simple illustration of the difference, the same model as in 4.1 was used to generate one
sample of 500 cases. In each of 10,000 replications, 250 were randomly assigned treatment,

and the rest were assigned control. The empirical standard deviation of the ÂTEinteract

estimator was 0.41, as compared to 0.25 for τ̂regression. In other circumstances with lower R2

the empirical standard deviation of ÂTEinteract should be lower. In any case, it is different.
Another group of authors [Rosenblum and van der Laan, 2010] arrive at an estimator

equivalent to τ̂regression through targeted maximum likelihood and appeals to general semi-
parametric theory (see their section 3). Impressively, they derive τ̂regression as a special case
of ATE estimators for generalized linear models regression though they assume that the
response covariate is bounded. They show that when the working model is correctly spec-
ified, the estimator is optimal in terms of asymptotic mean square error, but do not show
optimality in the case of misspecification. In contrast, our variance expressions are explic-
itly written down (and remain valid under misspecification), so that, extending the work of
[Rosenblum and van der Laan, 2010], it is easy for us to show by how much the improved
estimator is better than the baseline difference in means estimator.

We are also indebted to the work of Tsiatis et al. [Tsiatis et al., 2008], whose ANCOV A2

estimator (first defined in [Yang and Tsiatis, 2001]), like τ̂regression, is based on the regression
model with interactions (they consider it as a case of an augmentation estimator) and is
notationally equivalent. However, their practical implementation of computing the ATE
estimator’s variance estimate (see their section 4) differs from ours. Their method, among
other things, appeals to the sandwich estimator. For example, again using the model in 4.1,
the standard error estimate using the formula from [Tsiatis et al., 2008] is 0.33, compared
to our estimate of 0.25. In other models, it may be smaller. In any case, it is different. In a
subsequent paper, [Zhang et al., 2008] impressively introduce a general class of estimators for
which ANCOV A2 is a special case. We amplify this work by making explicit the comparison
to the difference in means estimator and by deriving an explicit, marginally valid formula
for the standard errors and their estimates.

12



4.2 Illustration on real data

We have found that in typical RCT examples, the improvement enjoyed by τ̂regression over τ̂diff

is small but real. We observe the comparison on data furnished from a classic study discussed
in [LaLonde, 1986] and reanalyzed in [Dehejia and Wahba, 1999]. The data come from the
National Support Work (NSW) Demonstration, where a pool of adults with economic and
social problems was randomized into two groups. The treated group was offered job training
while the control group was not. The response measured was earnings in 1978, after the
job training had concluded. The covariates that were adjusted for included: age, education
(number of years), an indicator for Black race, indicator for Hispanic race, indicator for
marital status, indicator for attainment of high school degree, and earnings in 1974.

The intent of the work in [LaLonde, 1986] was to compare ATE estimates from experi-
ments to those from observational studies. He compared the unbiased estimate of the ATE
from NSW groups to an estimate drawn by comparing the treated adults to a batch of con-
trols collected from separate comparison groups (PSID-1 and CPS-1 in his paper). Dehejia
and Wahba [Dehejia and Wahba, 1999] apply matching techniques for this comparison; rele-
vant for our work are the 297 treated and 260 control male subjects they analyze, and which
are available from the original NSW experiment.

In this experimental context we compare the ATE estimates and standard errors. Here,
τ̂diff = $4709.4, while the point estimate from our estimator is τ̂regression = $4435.2. The
respective standard errors are $443.5 and $431.9. The reduction in SE amounts to 3.1%,
with the R2 of the regression of salary in 1978 on covariates and their interaction with the
treatment indicator equal to 0.24. A gain of this magnitude is typical for an RCT with an
R2 of this size. As illustrated before, a higher R2 would have resulted in higher SE gains.

5 Conclusion

We lay the foundation for conducting principled and efficient asymptotic inference on ATEs.
In an infinite population, random design, regression based estimation, where the response
surface needn’t be linear, we showed how the ATE is equivalent to a regression parameter
and wrote down how to estimate it. We subsequently derived explicit standard errors for
τ̂regression, the regression adjusted estimator, and directly showed how it dominates τ̂diff, the
difference in means estimator, and therefor underlies a more powerful test fo the ATE.
Interestingly, despite the added source of variability from the randomness of the covariates,
the derived standard error, which also adjusts for covariates, is in expectation actually lower
than its conventional counterpart.

Bootstrapped confidence intervals can easily be generated and inference conducted for
the population ATE. Moreover, the paired bootstrap, mimicking as it does the random X
framework, is the natural technique for such intervals. Future work will focus on weighting
schemes when the treatment is correlated with covariates, as it would be, for example, in
observational studies. In this work we estimated with linear models. We hope to extend the
work, including explicitly written standard errors, to GLMs.
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6 Technical appendix

Proof of 3.1
After mean centering, τ̂regression =

(
β̂

(0)
T − β̂

(0)
C

)
. Direct application of proposition 5.4 in

[Buja et al., 2015] shows that the difference of the independent quantities β̂
(0)
T − β̂

(0)
C is an

unbiased estimate of β
(0)
T − β

(0)
C , which is equal to τ when µ = 0.

Proof of 3.2

(a) When the regression model is correctly specified, then it is an introductory result

that the LS estimates are unbiased: E
[
β̂

(0)
T

]
= β

(0)
T and that E

[
β̂

(0)
C

]
= β

(0)
C , so

E
[
β̂

(0)
T − β̂

(0)
C

]
= β

(0)
T − β

(0)
C = τ .

(b) Suppose that the treatment and response surfaces have a constant offset: nT = nC and
E [T |X] = E [C|X] + k. In the decomposition of τ̂regression − τ in the proof of 3.4, the
only term which does not generally have expectation 0 is the term denoted by R2, and

equal to
[
X̄T − X̄C

] [
pC(β̂T − βT ) + pT (β̂C − βC)

]
. It will have expectation 0 when

the two bracketed terms are uncorrelated. Exploiting the independence between the
treated and control groups, the bracketed terms will be uncorrelated iff

pCCov
(
X̄T , β̂T

)
= pTCov

(
X̄C , β̂C

)
(17)

Inversely weight the observations, giving weight 1
nT

to the control observations, and 1
nC

to

the treatment, so that (17) will hold true when Cov
(
X̄T , β̂T

)
= Cov

(
X̄C , β̂C

)
When

βC = βT , then, since the X̄T and X̄C are identically distributed, the above equality will
hold. βC = βT when there is a constant offset.

Proof of 3.3
The conventional estimator of the ATE is τ̂diff = T̄ − C̄. Assume the covariates have zero

mean; then its difference from the true ATE equals

τ̂diff − τ = T̄ − C̄ −
(
β0
T − β0

C

)
=

[
T̄ −

(
β0
T + X̄TβT

)]
−
[
C̄ −

(
β0
C + X̄CβC

)]
+ X̄TβT − X̄CβC (18)

The two terms – the former the residual means, and the latter a function of the covariates
– are independent. Hence
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V ar (τ̂diff) = V ar
{[
T̄ −

(
β0
T + X̄TβT

)]
−
[
C̄ −

(
β0
C + X̄CβC

)]}
+ V ar

{
X̄TβT − X̄CβC

}
=

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+

1

nT
[β′TΣXT

βT ] +
1

nC
[β′CΣXC

βC ]

=

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+

1

nT
[β′TΣXβT ] +

1

nC
[β′CΣXβC ]

as the covariance matrices of the treatment and control distributions are equal, since the
covariates are drawn from the same distribution.

Proof of 3.4
As before, we allow for unequal randomization, so that nT cases receive treatment, and

nC cases receive control; denote the proportions pT and pC , respectively, and suppose that
E [X] = µ and V ar[X] = Σ. Denote the ATE in the population by τ . It equals E [T ]−E [C] =
(β0

T − β0
C) + µ(βT − βC). So

τ̂regression = β̂0
T − β̂0

C + µ̂(β̂T − β̂C)

τ̂regression = β̂0
T − β̂0

C +
[
pTX̄T + pCX̄C

]
(β̂T − β̂C)

= T̄ − X̄T β̂T − (C̄ − X̄Cβ̂C) +
[
pTX̄T + pCX̄C

]
(β̂T − β̂C)

= T̄ − C̄ −
(
X̄T − X̄C

) (
pCβ̂T + pT β̂C

)
The multivariate mean can be taken to equal 0p WLOG since the problem is one of scale,
rather than location. So

τ̂regression − τ = T̄ − C̄ −
(
X̄T − X̄C

) (
pCβ̂T + pT β̂C

)
− β0

T + β0
C

=
[
T̄ − (β0

T + X̄TβT )
]
−
[
C̄ − (β0

C + X̄CβC)
]

− (X̄T − X̄C)
[
pC(β̂T − βT ) + pT (β̂C − βC)

]
+ (pTX̄T + pCX̄C)(βT − βC)

= R1 +R2 +R3 (19)

R1, R2, and R3 are uncorrelated: R1 is a function of the errors, which are independent of
the covariates, whereas R2 and R3 lie in the column space of the covariates. That R2 is
uncorrelated with R3 is verified algebraically.

Each of the Ri has expectation 0p: the first, R1, is a difference of average errors, equal
to
(
ε̄T + f̄T

)
−
(
ε̄C + f̄C

)
. The ε have expectation 0 by assumption, and the f by construc-

tion. R2 is asymptotically equal to 0, for the following reason: the treatment and controls
are uncorrelated, and E

[
X̄
]

= 0, so the only component of R2 not equal for all n to 0 in

expectation is pCX̄T β̂T − pTX̄Cβ̂C . We’ll now show that E
[
X̄T β̂T

]
→ 0:
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E
[
X̄T β̂

]
= E

[
X̄TE

[
β̂|XT

]]
= E

[
X̄T (X ′TXT )

−1
X ′TE [Y |XT ]

]
= E

[
X̄T (X ′TXT )

−1
X ′T (XTβT + ηT (XT ))

]
= E

[
X̄T (X ′TXT )

−1
X ′TXTβT + X̄T (X ′TXT )

−1
ηT (XT )

]
= E

[
X̄TβT

]
+ E

[
X̄T (X ′TXT )

−1
ηT (XT )

]

The first term is equal to 0 because E [X] = 0 by assumption. The second term is equal to
0 because ηT (XT ) is uncorrelated with the covariates and itself has expectation zero. And
E [R3] = 0 because E [X] = 0. Since the Ri are uncorrelated and have expectation zero,

V ar(τ̂regression) = E
[
R2

1

]
+ E

[
R2

2

]
+ E

[
R2

3

]
=

{(
E
[
ε̄2T
]

+ E
[
f̄ 2
T

])
+
(
E
[
ε̄2C
]

+ E
[
f̄ 2
C

])}
+O(N−2)

+ (βT − βC)′
(
p2
T

ΣXT

nT
+ p2

C

ΣXC

nC

)
(βT − βC)

=

(
σ2
T

nT
+
V ar[ηT ]

nT

)
+

(
σ2
C

nC
+
V ar[ηC ]

nC

)
+O(N−2)

+ (βT − βC)′
(
pT

ΣXT

N
+ pC

ΣXC

N

)
(βT − βC)

=

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+O(N−2) + (βT − βC)′

(
ΣX

N

)
(βT − βC)

The last line follows since ΣXT
= ΣXC

= ΣX , since they are all variances of a common
distribution. �

Proof of 3.3.1 Suppose now that the distribution of X is known. Its mean can be as-
sumed to be 0 WLOG. Then τ = β0

T − β0
C and τ̂regression = β̂0

T − β̂0
C , so that, using a similar

rearrangement as before,

τ̂regression − τ =
(
T̄ − β̂TX̄T

)
−
(
C̄ − β̂CX̄C

)
− (βT − βC)

=
[
T̄ −

(
β0
T + X̄TβT

)]
−
[
C̄ −

(
β0
C + X̄CβC

)]
+ X̄T

(
βT − β̂T

)
− X̄C

(
βC − β̂C

)
= R1 +R∗2 (20)

Direct comparison of 20 with 19 will show that the estimated ATE is also asymptotically unbi-
ased, and that its asymptotic variance is decreased by the value of R3, and some of R2. With

R3 omitted, the standard error of the regression can just be estimated by
√

MSET

nT
+ MSEC

nC
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Proof of 3.5
We now verify that the standard error of the proposed estimator dominates the standard

error estimator of the conventional ATE. We compare, therefore,[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+O(N−2) + (βT − βC)′

(
ΣX

N

)
(βT − βC)

to [
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+

1

nT
[β′TΣXβT ] +

1

nC
[β′CΣXβC ]

We easily show that the asymptotic variance of the conventional estimator is higher than
that of the regression estimator by comparing the variance components that differ among
the two equations, noting that the O(N−2) term vanishes.(√

nC
nT
βT +

√
nT
nC
βC

)′
ΣX

(√
nC
nT
βT +

√
nT
nC
βC

)
≥ 0 (21)

nC
nT

(β′TΣXβT ) + 2β′TΣXβC +
nT
nC

(β′CΣXβC) ≥ 0

N

nT
β′TΣXβT +

N

nC
β′CΣXβC ≥ β′TΣXβT − 2β′TΣXβC + β′CΣXβC

1

nT
[β′TΣXβT ] +

1

nC
[β′CΣXβC ] ≥ (βT − βC)′

(
ΣX

N

)
(βT − βC)�

The only non-algebraic step is in the first line, which is true because the LHS is a quadratic
form. Equality is attained iff βC = −nC

nT
βT , which can be verified by direct substitution into

(21).

Proof of remark on R2 following equation (15):
V ar(T̄ ) = SST

nT
, whereas the regression based variance at the covariate mean is estimated

by MSET [1 + 1
nT

], which can be rewritten as SST−SSR
nT−p−1

×
(
nT +1
nT

)
. Dividing both expressions

by SST leads us to compare 1
nT

to 1−R2

nT−p−1
×
(
nT +1
nT

)
. Equality is attained when R2 is equal

to p+2
nT +1

.
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